

Bluetooth Low Energy (BLE)

Bluetooth "classic"

- The "conventional" Bluetooth
- 2.4GHz
- Range: 1m 100m (10m typical)
- Connection-oriented: audio, file transfer, networking
- Reasonably fast data rate: 2.1 Mbps
- Power consumption:
 - < Wifi < 3G

Bluetooth Low Energy

- "Bluetooth Smart"
- Light-weight subset of classic Bluetooth
 - Operates in same freq. Range
 - introduced as part of the Bluetooth 4.0 core specification
- Started by Nokia as an in-house project called "Wibree"
- Target Apps:
 - Wireless battery-powered sensors eg. heart rate, thermometer, wearables
 - Low bandwith
 - No always on, constrained devices

BLE Applications

Health Care

Automation

Pay Systems

Sports/Fitness

Entertainment

Security

Toys

Proximity

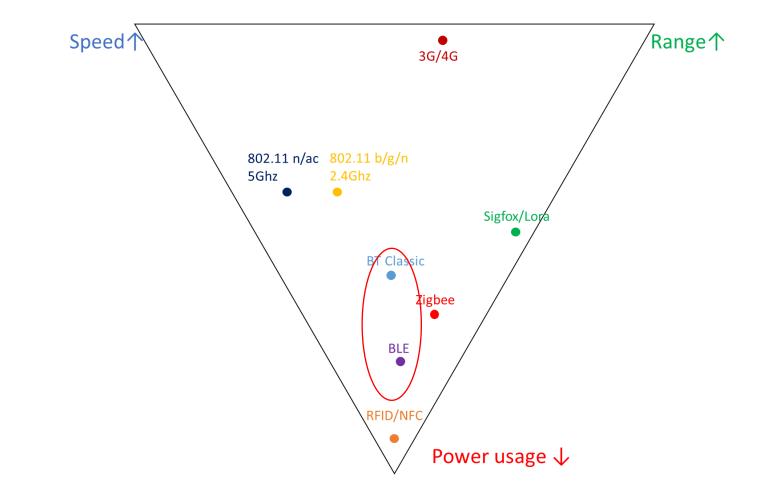
Bluetooth Classifications

• Bluetooth Classic

• high throughput, e.g. wireless audio and file transmission.

Bluetooth Smart

- State information
- Devices with low-duty cycles


Bluetooth SmartReady

 These devices are essentially the "hub" devices such as computers, smartphones, etc. They support both the "classic" and "smart" devices, just as our smartphones can connect to a Bluetooth speaker to transmit audio and also communicate to a fitness tracker.

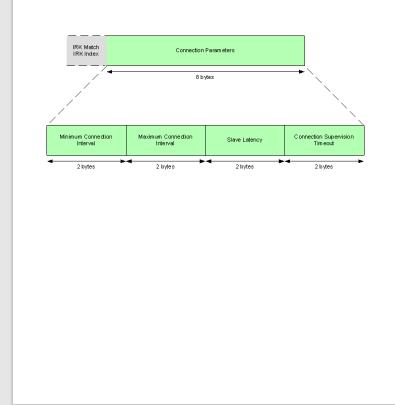
Bluetooth family

Wireless Technologies Comparison

BLE vs Classic

- Bluetooth and Bluetooth Low Energy are used for different purposes
- Bluetooth Classic
 - can handle a lot of data
 - consumes battery quickly
- BLE
 - used for applications that do not need to exchange large amounts of data
 - cheap
 - Marginally further range

BLE Platform Support


- Bluetooth 4.0 + (and Bluetooth Low Energy) is available on most major platforms:
 - iOS5+
 - Android 4.3+
 - Apple OS X 10.6+
 - Windows 8 +
 - GNU/Linux Vanilla BlueZ 4.93+

GAP and GAT for BLE

- Generic Access Profile (GAP) or Advertising
 - Information advertised to central before connection
 - Name of peripheral
 - Is it connectable?
 - Supported features (services)
- Generic Attribute Profile (GATT)
 - How to exchange data once connected
 - Identifies Services, Characteristics and Descriptors

Generic Access Profile (GAP)

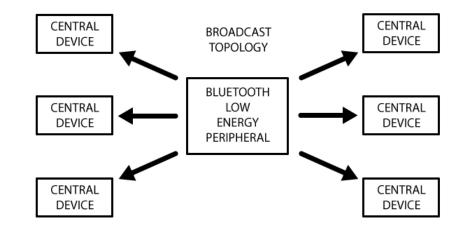
- GAP responsible for "device visibility."
- Determines how two devices can (or can't) interact with each other.

GAP Device Roles

- GAP defines 2 roles for devices:
 - Central
 - Peripheral
- Peripheral devices are small, low power, resource constrained devices
 - Connect to a powerful central device.
- Central devices are usually far more processing power and memory.
 - Tablet, Mobile phone, laptop

GAP - Advertising and Scan Response Data

- 2 ways for a device to advertise with GAP
 - Advertising Data payload
 - Scan Response payload.
- Advertising data payload is mandatory
- Scan response payload is optional
 - allows device designers to fit more information in the advertising payload such a strings for a device name, etc.
- Advertising Process

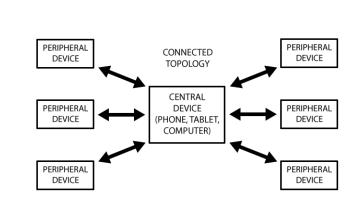

Advertising process

- Peripheral sets a specific advertising interval and transmit advertising packet
 - longer delays saves power but less responsive
- A listening device interested in the scan response payload can optionally request the scan response payload, and the peripheral will respond with the additional data.

Broadcast Network Topology

- Some devices/apps only require advertise data.
 - E.g. app requires peripheral to send data to more than one device at a time.
- Can include small amount of custom data in **31** byte advertising or scan response payloads.
- In this way, BLE peripheral can send data one-way to any devices in listening range

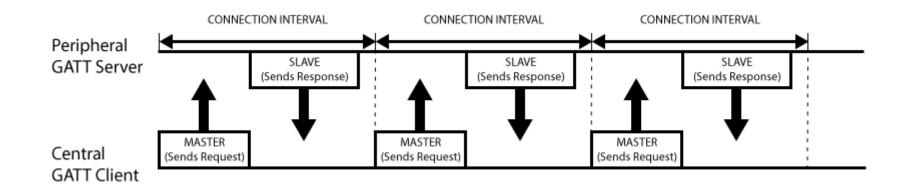
Bluetooth Connection


- Establishing a connection between a peripheral and a central device results in 1 to 1 communiction
 - the advertising process will stop
 - no longer be able to send advertising packets
- Communiction in both directions
- Must use GATT services and characteristics to communicate

Generic Attribute Profile - GATT

- Defines the way that two Bluetooth Low Energy devices transfer data back and forth
- Uses Services and Characteristics.
- With GATT, a BLE peripheral can only be connected to one central device (e.g. a mobile phone, etc.)

BLE Network Topology


- A peripheral can only be connected to one central device
- Ccommunication is **2** -way
- Central device can be connected to multiple peripherals.
- If data needs to be exchanged between two peripherals, a custom messaging system will need to be implemented
 - all messages pass through the central device.

GATT transactions

- Follows a (strange) client server relationship
- Peripheral is known as the GATT Server
- The **GATT Client** (the phone/tablet), which sends requests to this server.
- Follows master/slave approach
 - All transactions are started by the master device, the GATT Client
 - GATT client receives response from the slave device, the GATT Server.
- Peripheral will suggest a 'Connection Interval' to the central device, and the central device will try to reconnect every connection interval to see if any new data is available,

GATT Transactions

GATT – Services and Characteristics

 GATT transactions are based on Profiles, Services and Characteristics

SERVICE CHARACTERISTIC CHARACTERISTIC CHARACTERISTIC SERVICE	PROFILE	
CHARACTERISTIC CHARACTERISTIC SERVICE	SERVICE	
CHARACTERISTIC	CHARACTERISTIC	
SERVICE	CHARACTERISTIC	
	CHARACTERISTIC	
	CHARACTERISTIC	

GATT Profile

- A pre-defined collection of Services that has been compiled by either the Bluetooth Special Interest Group or by the peripheral designers.
 - E.g. The <u>Heart Rate Profile</u>
 - combines the Heart Rate Service and the Device Information Service.
- Complete list of GATT-based profiles can be found here: <u>Profiles</u> <u>Overview</u>

GATT Services

- Breaks data up into logic entities
- Contain one or more characteristics
- Each service distinguished by unique numeric ID called a UUID
 16 bit
- Set of officially adopted BLE services can be seen on the <u>Services</u>
- E.g. official Heart rate service
 - service has a 16-bit UUID of 0x180D
 - contains up to 3 characteristic
 - Heart Rate Measurement, Body Sensor Location and Heart Rate Control Point.

GATT Characteristics

- Represents a single data point
- Similarly to Services, each Characteristic distinguishes itself via a predefined UUID
 - Also use standard characteristics defined by the Bluetooth SIG
- E.G Heart Rate:
 - the <u>Heart Rate Measurement characteristic</u> is mandatory for the Heart Rate Service
 - Heart rate measurement has UUID of 0x2A37
- If you write apps that use BLE, **characteristics** are what you will be after with your BLE peripheral

- <u>https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt</u>
- <u>https://www.bluetooth.com/specifications</u>